Fundamentals of the Physics of Solids Volume 2 Electronic Properties 2009 by Jenö S車lyom (Author), Attila Pir車th (Translator)

Fundamentals of the Physics of Solids Volume 2 Electronic Properties 2009  by Jenö S車lyom (Author), Attila Pir車th (Translator)
Item# 1601010040
Retail price: US$98.07
Sale price: US$12.00

all items in this store are to be sent to your email within 24 hours after cleared payment. PDF eBooks are sent to you as email attachments. as for mp3 audiobook, a download link from ONEDRIVE will be sent to your email for you to download.



Fundamentals of the Physics of Solids Volume 2 Electronic Properties 2009 by Jenö S車lyom (Author), Attila Pir車th (Translator)

This book is the second of a single-authored, three-volume series that aims to deliver a comprehensive and self-contained account of the vast field of solid-state physics. It goes far beyond most classic texts in the presentation of the properties of solids and experimentally observed phenomena, along with the basic concepts and theoretical methods used to understand them and the essential features of various experimental techniques.

The first volume deals with the atomic and magnetic structure and dynamics of solids, the second with those electronic properties that can be understood in the one-particle approximation, and the third with the effects due to interactions and correlations between electrons.

This volume is devoted to the electronic properties of metals and semiconductors in the independent-electron approximation. After a brief discussion of the free-electron models by Drude and Sommerfeld, the methods for calculating and measuring the band structure of Bloch electrons moving in the periodic potential of the crystal are presented. The dynamics of electrons in applied electric and magnetic fields is treated in the semiclassical approximation. The effects due to the quantization of the energy levels in strong magnetic field are also discussed. The overview of the transport and optical properties of metals and semiconductors is followed by a phenomenological description of superconductivity. The last chapter deals with the physics of semiconductor devices.

This comprehensive treatment provides ample material for upper-level undergraduate and graduate courses. It will also be a valuable reference for researchers in the field of condensed matter physics.





Editorial Reviews Review

From the reviews: ※The second volume is centered on the highly mobile portion of a solid, the electrons. # senior students in physics will be able to tutor themselves through reading this volume. The text will also be very useful to a non-specialist in the field of electronic properties or to a research scientist who wants to get a basic introduction to the field. # second volume of this series lives up to our expectations and will be very useful to students, teachers, and scientists in solid-state physics.§ (Fernande Grandjean and Gary J. Long, Belgian Physical Society Magazine, Issue 3, 2010) From the Back Cover

This book is the second of a single-authored, three-volume series that aims to deliver a comprehensive and self-contained account of the vast field of solid-state physics. It goes far beyond most classic texts in the presentation of the properties of solids and experimentally observed phenomena, along with the basic concepts and theoretical methods used to understand them and the essential features of various experimental techniques.

The first volume deals with the atomic and magnetic structure and dynamics of solids, the second with those electronic properties that can be understood in the one-particle approximation, and the third with the effects due to interactions and correlations between electrons.

This volume is devoted to the electronic properties of metals and semiconductors in the independent-electron approximation. After a brief discussion of the free-electron models by Drude and Sommerfeld, the methods for calculating and measuring the band structure of Bloch electrons moving in the periodic potential of the crystal are presented. The dynamics of electrons in applied electric and magnetic fields is treated in the semiclassical approximation. The effects due to the quantization of the energy levels in strong magnetic field are also discussed. The overview of the transport and optical properties of metals and semiconductors is followed by a phenomenological description of superconductivity. The last chapter deals with the physics of semiconductor devices.

This comprehensive treatment provides ample material for upper-level undergraduate and graduate courses. It will also be a valuable reference for researchers in the field of condensed matter physics.