Statistical Analysis of Financial Data in S-Plus by Rene A.Carmona,

Statistical Analysis of Financial Data in S-Plus by Rene A.Carmona,
Item# 11123140133
Retail price: US$115.00
Sale price: US$12.00

all items in this store are to be sent to your email within 24 hours after cleared payment. PDF eBooks are sent to you as email attachments. as for mp3 audiobook, a download link from ONEDRIVE will be sent to your email for you to download.

Please Read Before Your Purchase!!!

1. This item is an E-Book in PDF format.

2. Shipping & Delivery: Send to you by E-mail within 24 Hours after cleared payment. Immediately Arrival!!!

3. Shipping ( by email) + Handling Fee = US$0.00 ( Promotional Period)

4. Time-Limited Offer, Order Fast.

*************************************************************************







Statistical Analysis of Financial Data in S-Plus

by Rene A.Carmona,



Series: Springer Texts in Statistics



Statistics > Business, Economics & Finance



2004, XVI, 451 p. 144 illus.



This book develops the use of statistical data analysis in finance, and it uses the statistical software environment of S-PLUS as a vehicle for presenting practical implementations from financial engineering. It is divided into three parts. Part I, Exploratory Data Analysis, reviews the most commonly used methods of statistical data exploration. Its originality lies in the introduction of tools for the estimation and simulation of heavy tail distributions and copulas, the computation of measures of risk, and the principal component analysis of yield curves. Part II, Regression, introduces modern regression concepts with an emphasis on robustness and non-parametric techniques. The applications include the term structure of interest rates, the construction of commodity forward curves, and nonparametric alternatives to the Black Scholes option pricing paradigm. Part III, Time Series and State Space Models, is concerned with theories of time series and of state space models. Linear ARIMA models are applied to the analysis of weather derivatives, Kalman filtering is applied to public company earnings prediction, and nonlinear GARCH models and nonlinear filtering are applied to stochastic volatility models. The book is aimed at undergraduate students in financial engineering, master students in finance and MBA's, and to practitioners with financial data analysis concerns.

Content Level » Professional/practitioner

Related subjects » Business, Economics & Finance - Quantitative Finance